Калькулятор расчета нагрузки на свайный или столбчатый фундамент

Вопрос устройства фундамента является чрезвычайно важным, ведь это основа долговечности и надежности всей конструкции жилого дома. Непосредственно перед укладкой основания необходимо осуществить ряд вычислений, в частности, расчет нагрузок, которые фундамент будет испытывать. Однако следует учесть, что тип фундамента и ряд его особенностей во многом зависят от свойств подстилающих пород, поэтому нагрузки на грунт также рассчитываются и учитываются.

Пример сбора нагрузок на фундамент

Исходные данные:

Предполагается строительство жилого 2-х этажного дома с холодным чердаком и двухскатной крышей. Опирание крыши производится на две крайних стены и одну стену под коньком. Подвал не предусмотрен.

Место строительства — г. Нижегородская область.

Тип местности — поселок городского типа.

Размеры дома — 9,5х10 м по наружным граням фундамента.

Угол наклона крыши — 35°.

Высота здания — 9,93 м.

Фундамент — железобетонная монолитная лента шириной 500 и 400 мм и высотой 1 900 мм.

Цоколь — керамический кирпич, толщиной 500 и 400 мм и высотой 730 мм.

Наружные стены — газосиликат плотностью 500 кг/м3, толщина стеной 500 мм и высотой 6 850 мм.

Внутренние несущие стены — газосиликат плотностью 500 кг/м3, толщиной стены 400 м и высота 6 850 мм.

Перекрытия и крыша — деревянные.

Конструкции, которые могли бы задержать снег на крыше, не предусмотрены.

План фундамента.

Разрез дома, с действующими нагрузками.

Требуется:

Собрать нагрузки на центральную ленту фундамента, расположенную под внутренней несущей стеной, если грузовая площадь от перекрытия 4,05 м2, а от крыши — 5,9 м2.

Сбор нагрузок на внутреннюю несущую стену.

Определяем нагрузки, действующие на 1 м2 грузовой площади (кг/м2) всех конструкций, нагрузка которых передается на фундамент.

Вид нагрузки Норм. Коэф. Расч.
Нагрузка от пола 1-го этажа (q1)

Постоянные нагрузки:

— нижняя обшивка из досок t=30мм (ель ρ=450кг/м3)

— утеплитель t=180мм (пенопласт ρ=20кг/м3)

— доски пола t=36мм (ель ρ=450кг/м3)

Временные нагрузки:

— жилые помещения

 

13,5 кг/м2

3,6 кг/м2

16,2 кг/м2

 

150 кг/м2

 

1,1

1,3

1,1

 

1,3

 

15,4 кг/м2

4,7 кг/м2

17,8 кг/м2

 

195 кг/м2

ИТОГО 183,8 кг/м2   232,9 кг/м2
Нагрузка от перекрытия 1-го этажа (q2)

Постоянные нагрузки:

— нижняя обшивка из досок t=16мм (ель ρ=450кг/м3)

— доски пола t=36мм (ель ρ=450кг/м3)

Временные нагрузки:

— жилые помещения

 

7,2 кг/м2

16,2 кг/м2

 

 150 кг/м2

 

1,1

1,1

 

1,3

 

7,9 кг/м2

17,8 кг/м2

 

195 кг/м2

ИТОГО 173,4 кг/м2   220,7 кг/м2
Нагрузка от перекрытия 2-го этажа (q3)

Постоянные нагрузки:

— нижняя обшивка из досок t=30мм (ель ρ=450кг/м3)

— утеплитель t=180мм (пенопласт ρ=20кг/м3)

— верхняя обшивка из досок t=30мм (ель ρ=450кг/м3)

Временные нагрузки:

— чердачные помещения

 

13,5 кг/м2

3,6 кг/м2

13,5 кг/м2

 

70 кг/м2

 

1,1

1,3

1,1

 

1,3

 

15,4 кг/м2

4,7 кг/м2

15,4 кг/м2

 

91 кг/м2

ИТОГО 100,6 кг/м2   126,5 кг/м2
Нагрузка от конструкций крыши (q4)

Постоянные нагрузки:

— внутренняя обшивка из досок t=16мм (ель ρ=450 кг/м3)

— стропила (ель ρ=450кг/м3)

— обрешетка (ель ρ=450кг/м3)

— гибкая черепица (ρ=1 400кг/м3)

Временные нагрузки:

— обслуживание крыши

 

7,2 кг/м2

3,4 кг/м2

3,3 кг/м2

7 кг/м2

 

100 кг/м2

 

1,1

1,1

1,1

1,3

 

1,3

 

7,9 кг/м2

3,7 кг/м2

3,6 кг/м2

9,1 кг/м2

 

130 кг/м2

ИТОГО 120,9 кг/м2   154,3 кг/м2
Вес фундамента (q5)

Постоянные нагрузки:

— вес ж/б ленты шириной 400мм (железобетон ρ=2 500 кг/м3)

 

1 000 кг/м2

 

1,1

 

1 100 кг/м2

ИТОГО 1 000 кг/м2   1 100 кг/м2
Вес керамического кирпича (q6)

Постоянные нагрузки:

— вес керамического кирпича 400мм (ρ=1600 кг/м3)

 

640 кг/м2

 

1,1

 

704 кг/м2

ИТОГО 640 кг/м2   704 кг/м2
Все газосиликаных блоков (q7)

Постоянные нагрузки:

— вес газосиликат 400мм (ρ=500 кг/м3)

 

200 кг/м2

 

1,1

 

220 кг/м2

ИТОГО 200 кг/м2   220 кг/м2
Снег (q8)

Временные нагрузки:

— снег

 

140 кг/м2

 

1,4

 

196 кг/м2

ИТОГО 140 кг/м2   196 кг/м2
Ветер (q9)

Временные нагрузки:

— ветер

 

15 кг/м2

 

1,4

 

21 кг/м2

ИТОГО 15 кг/м2   21 кг/м2

Определяем нормативную и расчетную нагрузки на фундамент:

qнорм = 183,8кг/м2 · 4,05м + 173,4кг/м2 · 4,05м + 100,6кг/м2 · 4,05м + 120,9кг/м2 · 5,9м + 1000кг/м2 · 1,9м + 640кг/м2 · 0,73м + 200кг/м2 · 6,85м + 140кг/м2 · 5,9м + 15кг/м2 · 2,95м = 7174,85 кг/м.

qрасч = 232,9кг/м2 · 4,05м + 220,7кг/м2 · 4,05м + 126,5кг/м2 · 4,05м + 154,3кг/м2 · 5,9м + 1100кг/м2 · 1,9м + 704кг/м2 · 0,73м + 220кг/м2 · 6,85м + 196кг/м2 · 5,9м + 21кг/м2 · 2,95м = 8589,05 кг/м.

Расчёт свайных фундаментов по несущей способности

Расчёт фундамента по оси 1-В

Определяем суммарную нагрузку в уровне обреза ростверка из расчёта фундамента по I группе предельных состояний.

Определяем количество свай в ростверке:

Необходимое количество свай и в свайном фундаменте в первом приближении можно определить по формуле

где NI = 1512 кН — расчетная вертикальная нагрузка в уровне обреза фундамента.

Конструктивно принимаем 6 сваи.

Размещение свай в плане.

Размещение свай в плане

Определение расчётной нагрузки, передаваемой на сваю и уточнение количества свай.

Проверку фактической расчетной нагрузки на каждую сваю для внецентренно нагруженного фундамента осуществляют исходя из условия:

где N — фактическая расчетная нагрузка на максимально нагруженную сваю, кН;

F — допускаемая расчетная нагрузка на сваю, кН.

где n — число свай в фундаменте;

МоyI, МохI — расчетные изгибающие моменты, относительно главных центральных осей в плоскости подошвы ростверка, кН·м;

yi, xi — расстояния от главных осей до оси каждой сваи, м;

ymax, хmax — расстояния от главных осей до оси максимально нагруженной сваи, для которой вычисляется расчетная нагрузка, м.

Схема к определению расчетной нагрузки при эксцентриситете относительно двух осей инерции.

— условие выполняется.

Определение осадки свайного куста из висячих свай.

Расчет свайного куста из висячих свай по деформациям производится как для условного фундамента на естественном основании методом послойного суммирования.

Границы условного фундамента определяются следующим образом: снизу — плоскостью AD, проходящей через нижние концы свай; с боков — вертикальными плоскостями АВ и CD, отстоящими от наружных граней крайних рядов вертикальных свай на расстоянии (рисунок 16):

Осредненное значение угла внутреннего трения грунта определяется:

где h — глубина погружения сваи в грунт,

— расчетное значение углов внутреннего трения для отдельных, пройденных сваями слоев грунта толщиной Hi.

Определение границ условного фундамента при расчёте свайных фундаментов по деформациям

Размеры подошвы условного фундамента определяют по формулам

Lусл = L + 2S;

Bусл = В + 2S.

Lусл = 1.2 + 2 · = м;

Bусл = 1.2 + 2 · = м;

Площадь подошвы условного фундамента определяется по формуле

Aусл = Bусл · Lусл.

Aусл = · = м2.

При определении деформации основания необходимо выполнение следующего условия:

Pср ? R;

где Pcp — среднее фактическое давление на грунт в плоскости нижних концов свай, кН/м;

R — расчетное сопротивление грунта в плоскости нижних концов свай, кН/м2.

Расчетное сопротивление грунта в уровне подошвы условного фундамента определяется по формуле

где гс1, гс2 — коэффициенты условий работы;

Мг, Мq, Мс — коэффициенты, принимаемые в зависимости от угла внутреннего трения ц под подошвой условного фундамента;

гII — удельный вес грунта под подошвой условного фундамента, кН/м2;

Вусл — ширина подошвы условного фундамента, м;

dI = hycл — глубина заложения подошвы условного фундамента, м;

CII — расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой условного фундамента кПа;

— осредненное значение удельного веса грунта выше подошвы условного фундамента.

Фактическое давление, действующее по подошве условного фундамента, определяется по формуле

Вес условного фундамента определяется по формуле:

GH = Gp + Gcв + Gгр,

где Gp = Vpocm · гбет — вес ростверка,

Vрост — объем ростверка, м3;

гбет = 25 — удельный вес железобетона, кН/м3;

Gсв = n · Vсв · гбет — вес свай,

Vсв — объем сваи, м3;

Gгp = ( — Vрост -Vсв) — вес грунта в межсвайном пространстве.

= Аусл · hусл =·7.4= — объем условного фундамента, m3.

Gp = (0.7·2.6·3.1·1.5+1.1·1·1.2) · 25= кН,

Gсв = 4·(·0.3·0.3+1/3··0.3·0.3) · 25 = ,

Gгp = () · 19.7 = 1017.9 кН,

GII = + 52.5 + 1017.9 = кН,

Pср ? R

— условие выполняется.

Расчёт осадки.

Расчет осадки условного фундамента на естественном основании ведется методом послойного суммирования.

Толщина слоя составляет

Подсчёт напряжений на границах элементах слоёв сводим в таблицу.

Параметры для определения величины осадки фундамента

Расчет осадки выполняется по формуле:

Рассчитываем снеговую нагрузку

В зимнее время помимо собственно веса крыши – на фундамент будет оказывать давление и снег. В разных регионах нашей страны средняя величина зимнего среднего покрова варьируется в зависимости от климатических условий. Для уточнения снеговой нагрузки можно воспользоваться специальной картой, составленной на основе климатических наблюдений.

Чтобы выяснить нагрузку на фундамент от снега – умножаем предельную величину снежного покрова на площадь кровли и делим на площадь той части фундамента, на которую будет оказываться нагрузка.

Производим расчет снеговой нагрузки на фундамент в зависимости от региона — таблица

Рассчитываем снеговую нагрузку

Произведем примерный расчет:

  1. С помощью геометрических формул вычисляем общую площадь кровли. Она составит 72 кв.м.
  2. Для Подмосковья максимальная снеговая нагрузка составит 126 кг на один кв.м.. Умножаем этот показатель на площадь кровли и делим на площадь нагруженной части фундаментного основания. Полученная величина составляет 1134 кг на один кв.м.

Преимущества и слабые стороны плит с полостями

Плиты перекрытия с полостями

Пустотелые плиты популярны благодаря комплексу достоинств:

  • небольшому весу. При равных размерах они обладают высокой прочностью и успешно конкурируют с цельными панелями, которые имеют большой вес, соответственно увеличивая воздействие на стены и фундамент строения;
  • уменьшенной цене. По сравнению с цельными аналогами, для изготовления пустотелых изделий требуется уменьшенное количество бетонного раствора, что позволяет обеспечить снижение сметной стоимости строительных работ;
  • способности поглощать шумы и теплоизолировать помещение. Это достигается за счет конструктивных особенностей, связанных с наличием в бетонном массиве продольных каналов;
  • повышенному качеству промышленно изготовленной продукции. Особенности конструкции, размеры и вес не позволяют кустарно изготавливать панели;
  • возможности ускоренного монтажа. Установка выполняется намного быстрее, чем сооружение цельной железобетонной конструкции;
  • многообразию габаритов. Это позволяет использовать стандартизированную продукцию для строительства сложных перекрытий.

К преимуществам изделий также относятся:

Преимущества и слабые стороны плит с полостями
  • возможность использования внутреннего пространства для прокладки различных инженерных сетей;
  • повышенный запас прочности продукции, выпущенной на специализированных предприятиях;
  • стойкость к вибрационному воздействию, перепадам температур и повышенной влажности;
  • возможность использования в районах с повышенной до 9 баллов сейсмической активностью;
  • ровная поверхность, благодаря которой уменьшается трудоемкость отделочных мероприятий.

Изделия не подвержены усадке, имеют минимальные отклонения размеров и устойчивы к воздействию коррозии.

Пустотные плиты перекрытия

Имеются также и недостатки:

  • потребность в использовании грузоподъемного оборудования для выполнения работ по их установке. Это повышает общий объем затрат, а также требует наличия свободной площадки для установки подъемного крана;
  • необходимость выполнения прочностных расчетов. Важно правильно рассчитать значения статической и динамической нагрузки. Массивные бетонные покрытия не стоит устанавливать на стены старых зданий.

Для установки перекрытия необходимо сформировать армопояс по верхнему уровню стен.

Расчет нагрузки на плиту перекрытия

Расчетным путем несложно определить, какую нагрузку выдерживают плиты перекрытия. Для этого необходимо:

Преимущества и слабые стороны плит с полостями
  • начертить пространственную схему здания;
  • рассчитать вес, действующий на несущую основу;
  • вычислить нагрузки, разделив общее усилие на количество плит.

Определяя массу, необходимо просуммировать вес стяжки, перегородок, утеплителя, а также находящейся в помещении мебели.

Рассмотрим методику расчета на примере панели с обозначением ПК , которая весит 2,85 т:

  1. Рассчитаем несущую площадь – 6х15=9 м2.
  2. Вычислим нагрузку на единицу площади – 2,85:9=0,316 т.
  3. Отнимем от нормативного значения собственный вес 0,8-0,316=0,484 т.
  4. Вычислим вес мебели, стяжки, полов и перегородок на единицу площади – 0,3 т.
  5. Сопоставимый результат с расчетным значением 0,484-0,3=0,184 т.

Многопустотная плита перекрытия ПК

Полученная разница, равная 184 кг, подтверждает наличие запаса прочности.

Плита перекрытия – нагрузка на м2

Методика расчета позволяет определить нагрузочную способность изделия.

Преимущества и слабые стороны плит с полостями

Рассмотрим алгоритм вычисления на примере панели ПК весом 1,18 т:

  1. Рассчитаем площадь, умножив длину на ширину – 2,3х1,5=3,45 м2.
  2. Определим максимальную загрузочную способность – 3,45х0,8=2,76т.
  3. Отнимем массу изделия – 2,76-1,18=1,58 т.
  4. Рассчитаем вес покрытия и стяжки, который составит, например, 0,2 т на 1 м2.
  5. Вычислим нагрузку на поверхность от веса пола – 3,45х0,2=0,69 т.
  6. Определим запас прочности – 1,58-0,69=0,89 т.

Фактическая нагрузка на квадратный метр определяется путем деления полученного значения на площадь 890 кг:3,45 м2= 257 кг. Это меньше расчетного показателя, составляющего 800 кг/м2.

Расчет нагрузки на фундамент — калькулятор веса дома

    Расчет нагрузки на фундамент от будущего дома наряду с определением свойств грунта на участке застройки — это две первоочередные задачи, которые нужно выполнить при проектировании любого фундамента.

    О приблизительной оценке характеристик несущих грунтов своими силами говорилось в статье «Определяем свойства грунтов на участке застройки».

А здесь представлен калькулятор, с помощью которого можно определить общий вес строящегося дома. Полученный результат используется для расчёта параметров выбранного типа фундамента.

Описание структуры и работы калькулятора приводится непосредственно под ним.

Работа с калькулятором

   Шаг 1: Отмечаем имеющуюся у нас форму коробки дома. Есть два варианта: либо коробка дома имеет форму простого прямоугольника (квадрата), либо любую другую форму сложного многоугольника (в доме больше четырёх углов, имеются выступы, эркеры и т.п.).

    При выборе первого варианта необходимо задать длину (А-В) и ширину (1-2) дома, при этом нужные для дальнейшего расчёта значения периметра наружных стен и площади дома в плане высчитываются автоматически.

    При выборе же второго варианта периметр и площадь необходимо рассчитать самостоятельно (на бумажке), т.к варианты формы коробки дома очень разнообразны и у всех свои. Полученные цифры заносятся в калькулятор. Обращайте внимание на единицы измерения. Расчеты ведутся в метрах, в квадратных метрах и килограммах.

   Шаг 2: Указываем параметры цоколя дома. Простыми словами, цоколь — это нижняя часть стен дома, возвышающаяся над уровнем грунта. Он может исполняться в нескольких вариантах:

  1. цоколь является верхней частью ленточного фундамента выступающей над уровнем грунта.
  2. цоколь является отдельной частью дома материал которой отличается и от материала фундамента и от материала стен, например, фундамент из монолитного бетона, стены из бруса, а цоколь из кирпича.
  3. цоколь выполняется из того же материала, что и наружные стены, но так как он часто облицовывается другими материалами нежели стены и не имеет внутренней отделки, поэтому мы считаем его отдельно.
Расчет нагрузки на фундамент — калькулятор веса дома

    В любом случае высоту цоколя отмеряйте от уровня грунта до уровня, на который ложится цокольное перекрытие.

   Шаг 3: Указываем параметры наружных стен дома. Высота их отмеряется от верха цоколя до крыши либо до основания фронтона, так как отмечено на рисунке.

    Суммарную площадь фронтонов также как и площадь оконных и дверных проёмов в наружных стенах необходимо рассчитать исходя из проекта самостоятельно и внести полученные значения в калькулятор.

    В расчёт заложены среднестатистические цифры удельного веса оконных конструкций с двухкамерным стеклопакетом (35 кг/м²) и дверей (15 кг/м²).

    Шаг 4: Указываем параметры перегородок в доме. В калькуляторе несущие и не несущие перегородки считаются отдельно.

Сделано это специально, так как в большинстве случаев несущие перегородки более массивные (они воспринимают нагрузку от перекрытий или крыши).

А не несущие перегородки являются просто ограждающими конструкциями и могут возводиться, к примеру, просто из гипсокартона.

   Шаг 5: Указываем параметры крыши. В-первую очередь выбираем её форму и уже исходя из неё задаём нужные размеры. Для типовых крыш площади скатов и углы их наклона рассчитываются автоматически. Если же Ваша крыша имеет сложную конфигурацию, то площадь её скатов и угол их наклона, необходимые для дальнейших расчётов, придётся определять опять же самостоятельно на бумажке.

    Вес кровельного покрытия в калькуляторе рассчитывается с учётом веса стропильной системы, принятого равным 25 кг/м².

  Далее для определения снеговой нагрузки необходимо по прилагаемой карте выбрать номер подходящего района.

Калькулятор количества свай

Кол-во свай: Диаметр сваи: Длина сваи:

Если вам необходимо рассчитать количество винтовых свай, которые потребуются для строительства фундамента на вашем объекте, вы можете сделать это, не выходя из дома. Вам нужно только знать первичные параметры.

Воспользуйтесь онлайн-калькулятором расчета количества свай на нашем сайте. Помимо необходимого количества, вы сможете узнать также их предварительный диаметр и длину.

Расчет свайного поля онлайн достаточно прост. Для этого не нужно иметь специальное образование и читать литературу. Вам требуется только внести данные в существующие графы.

Расчет количества винтовых свай с помощью калькулятора

  1. Укажите длину сторон вашего строения, выбрав по форме от 3-х до 15-ти метров.
  2. Укажите тип строения – дом, гараж, бытовое сооружение и пр.
  3. Укажите «этажность», если появляются соответствующие графы. Заполняя графы, обратите внимание на то, что дом с мансардой будет считаться полутора этажным строением.
  4. Выбирайте материал вашего строения.
  5. Укажите тип грунта на участке.
  6. Укажите количество углов планируемого дома.
  7. Укажите высоту цокольного этажа из предложенных вариантов.
  8. Отметьте, собираете ли вы устанавливать камин/печку.
  9. Кликнете «Рассчитать».

Через несколько секунд появится результат подсчета необходимого количества свай для вашего объекта.

Рассмотрим пример

Имеется торфяной участок с глубиной торфа 3 метра. Вы решили построить деревянный дом (брус 150х150), площадью 10 на 10 метров. Дом планируется оригинальной формой с девятью углами и мансардой. На высоте 50 см над землей будет расположен пол. Чтобы зимой вам было тепло, было решение установить в доме камин.

После того, как были внесены все данные, калькулятор подсчета количества винтовых свай выдал нам результат – 32 сваи, диаметром 108 мм и длиной в 4,5 метра.

Конечно, данный расчет является предварительным. Он служит ориентиром при планировании бюджета и дальнейшего заказа. Для более точного результата необходим выезд специалиста на объект для детального осмотра участка под планируемую застройку, где будут учтены все факторы.

Самостоятельный расчет на месте

Такой же расчет можно сделать самостоятельно и без использования калькулятора. Полученный таким способом результат в большинстве случаев менее точный. Вам нужно будет определить тип и плотность грунта, проанализировать природный рельеф, определить расстояние, на котором находятся более плотные слои почвы.

Еще одним вариантом, как можно узнать необходимое количество свай – это рассчитать их по плану первого этажа. Здесь вам необходимо посчитать количество углов и стыки внешних стен с несущими перегородками.

В указанных местах и должны располагаться сваи, они должны идти по периметру с шагом не более трех метров.

Если вы планируете установить камин, то, в зависимости от его веса, вам необходимо установить под него от одной до четырех свай.

Проведите расчет на калькуляторе и по плану первого этажа и сравните результаты.

Предварительный расчет нагрузки фундамента на грунт

Нагрузку фундамента на грунт расчитывают как произведение объема фундамента на удельную плотность материала, из которого он выполнен, разделенное на 1 м 2 площади его основания. Объем можно найти как произведение глубины заложения на толщину фундамента. Толщину фундамента принимают при предварительном расчете равной толщине стен.

Таблица 6 – Удельная плотность материалов фундамента

  1. Площадь фундамента – 14,4 м 2 , глубина заложения – 1,4 м. Объем фундамента равен 14,4·1,4=20,2 м 3 .
  2. Масса фундамента из мелкозернистого бетона равна: 20,2·1800=36360 кг.
  3. Нагрузка на грунт: 36360/14,4=2525 кг/м 2 .

Определение крыши и итоговый результат

Схема свайно-ростверкового фундамента.

Для определения тяжести крыши возьмем в качестве примера площадь проекции 120 кв.м и угол наклона крыши 30 градусов. Предположим, что для нашего домика понадобится 32 доски длиной 200 мм, толщиной 50 мм и 10 брусьев 150 мм на 100 мм. Удельный вес пиломатериалов на ленточный фундамент 500 кг/кв.м, теперь можно рассчитать вес стропил:

((32 х 0,06) + (10 х 0,09)) х 500 = 1410 кг.

К данной цифре прибавляется масса материала, выбранного для крыши. Возьмем ондулин (150 х 4 = 600 кг), общий вес кровли получится 2010 кг (1410 + 600).

К данному значению возьмем снеговую дополнительную нагрузку, к примеру, 120 кг/кв.м. Умножаем площадь крыши 120 на 120 кг и получаем 14400 кг дополнительной тяжести. Также следует учесть и ветровую нагрузку на ленточный фундамент. Здесь умножается площадь дома на 15 и высоту дома и прибавляется 40, получается ветровая нагрузка (100 х 15 х 7 + 40 = 14500 кг). Затем просчитывается еще дополнительная нагрузка, которая будет находиться в доме (мебель, оборудование, люди). Для помощи можно воспользоваться еще одной таблицей.

Строения Дополнительный вес
Квартиры, общежития, гостиницы, детские сады, дома 195 кг/кв.м
Административные здания 240 кг/кв.м
Кабинеты и лаборатории научных, лечебных и образовательных учреждений 240 кг/кв.м
Читальные залы библиотек 240 кг/кв.м
Кафе, рестораны, столовые 360 кг/кв.м
Чердачные помещения 91 кг/кв.м

В качестве примера мы используем жилой дом, поэтому умножаем площадь дома на 195 (100 х 195 = 19500 кг). На финише мы получили все цифры, необходимые для суммирования подсчета на ленточный фундамент.

  • стены дома – 75000 кг.;
  • перекрытия – 65000 кг.;
  • временная снеговая нагрузка – 144000 кг.;
  • крыша – 2010 кг.;
  • ветровая нагрузка на кв.м – 14500 кг.;
  • дополнительная нагрузка (мебель, оборудование, люди) – 19500 кг.

Общая сумма получается 320010 кг. Теперь можно определить общий вес строения и превратить его сразу в формулу. Полный вес дома умножается на 1,3, тогда получаем несущую конструкцию грунта. Несущая способность грунта равна ширине основания, умноженной на его длину и умноженной на сопротивление грунта. Таким образом можно легко рассчитать ширину подошвы. Полную массу строение умножают на 1,3 и делят на длину основания, умноженного на сопротивление грунта.

Плюсы и минусы материала

Прежде чем выбрать блоки для выполнения монтажных работ нужно ознакомиться с преимуществами и недостатками материала ФБС

Прежде чем выбрать блоки для выполнения монтажных работ нужно ознакомиться с преимуществами и недостатками материала ФБС. А именно таких:

  • Хорошая прочность;
  • Долговечность;
  • Устойчивость к механическому и биологическому воздействию;
  • Высокий уровень теплоизоляции;
  • Экологическая безопасность;
  • Широкий ассортимент моделей блоков.

Такие достоинства расширяют спектр применения изделий ФБС, позволяя использовать их в самых некомфортных условиях. Специалисты строительной сферы настоятельно рекомендуют использовать такой материал для укладки цокольных помещений, так как это позволить сократить время на возведения дома. Конечно, такие блоки имеют огромное количество преимуществ, но мы должны рассмотреть и минусы данных изделий:

  • Стоит отметить, отметить, что блоки имеют высокую стоимость, но, она ниже, чем у монолита;
  • Кроме этого, в большинстве случаем не получается получить максимальную герметизацию в местах стыкования. Если устанавливать фундамент наливного типа и цоколь, то можно получить более надежное строение. Особенно актуальна такая конструкция в сложных климатических условиях.
  • Для строительных работ возведения цоколя, необходимо воспользоваться услугами специальных машин.

Пример расчета

Вычисления включают в себя следующие шаги:

  • подбор геометрических параметров;
  • расчет бетона на фундамент;
  • и расчет армирования ленточного фундамента.

Пример расчета геометрии

Для расчета фундамента возьмем двухэтажный кирпичный дом с наружной стеной 510 мм, суммарная высота наружной стены —4,5 м. Внутренних стен нет. Он расположен в , грунт на участке — среднезернистый песок (R = 5 кг/см2). Перекрытия (2 шт., над подвалом и над первым этажом) из плит ПК, перегородки гипсокартонные высотой 2,7 м и общей протяженностью 20 м. Высота этажа — 3 м, размеры в плане — 6х6 м. Вода на участке залегает низко, поэтому принято решение строить заглубленный фундамент высотой 2 м. Крыша четырехскатная с покрытием из металла. Наклон ската — 30°.

Пример расчета начинается со сбора нагрузок в форме таблицы.

Пример расчета
Тип нагружения Вычисления
Фундамент монолитный (предварительно шириной 0,6 м по периметру здания, равному 36 м) 36м*0,6м*2м*2500кг/м3*1,3 = 140400 кг
Стена из кирпича 6м*4,5м*4шт.*920 кг/м2*1,3 = 129168 кг
Гипсокартонные перегородки 20м*2,7м*30кг/м2*1,1 = 1782 кг
Перекрытия 2шт*6м*6м*625 кг/м2*1,2 = 54000 кг
Крыша 6м*6м*60кг/м2*1,05 = 2268 кг 2268 кг/cos30° = 2607 кг
Полезное 2 перекрытия*36м2*150кг/м2*1,2 = 12960 кг
Снеговое 36м2*180кг/м2*1,4 = 9072 кг
Сумма 349 989 кг

В = Р/(L*R) = 349989кг/ (36000см*5кг/см2) = 1,94м. Конструкция рассчитана.

Рассчитанный размер ширины округляем до 2 м. Для ширины по всей высоте это много, достаточно будет 50 см под стены 51 см. Свес 1 см допускается (максимальный составляет 4 см в одну сторону). Ширина подошвы больше той, которая использована в расчете, но по всей высоте размер меньше первоначального. По этой причине нет необходимости переделывать вычисления с новой массой подземной конструкции.

Подсчет бетона

Перед покупкой смеси должна быть вычислена ее необходимая кубатура. Для этого потребуется просто найти объем ленты. К количеству бетона для ленточного фундамента рекомендуется прибавить запас в 5—7%.

Армирование

Арматура для ленточного фундамента нужна, чтобы скомпенсировать изгибающие воздействия. Какую арматуру использовать правильно для армирования? Здесь все зависит от высоты подземной части и ее длины. Чтобы понять, какая арматура нужна в качестве рабочей, делают простые вычисления. Расчет количества арматуры выполняется так, чтобы ее суммарное сечение составляло 0,1% от сечения бетонной конструкции. При этом есть минимальные конструктивные требования:

  • Какая арматура нужна для конструкции с длиной стороны менее 3 м? Ответом будет сечение 10 мм.
  • При длине стороны более 3 м потребуется 12-ти миллиметровая арматура для фундамента.

Армирование фундамента компенсирует изгибающие воздействия

Пример расчета

Расчет выполняют приблизительно. Рассчитать арматуру более точно сможет только профессионал. Шаг рабочих прутов подбирают так, чтобы они были распределены равномерно. Желательно использовать одинаковый шаг, располагая элементы в нижней части ленты, наверху и посередине.

Дальше требуется рассчитать количество для хомутов. Они соединяют рабочие детали каркаса между собой. Раскладка арматуры в ленточном фундаменте предполагает наличие вертикальных и горизонтальных хомутов. Их изготавливают из стержней диаметром 8 мм. Шаг назначают в пределах 20—30 см. В углах шаг уменьшают в два раза.

Вычисление количества арматуры для ленточного фундамента помогает сэкономить время и деньги. Зная точное количество арматуры для каждого диаметра и ее шаг можно легко выполнить усиление ленты и закупить материалы.

Читайте также:  Виды фундаментов применяемые в строительстве